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Abstract

Elderly people often experience a fear of falling. A re-
liable fall detector could increase their confidence in re-
ceiving prompt help after a fall, thus reducing their mental
distress. A wearable sensor such as Toshiba’s Silmee de-
vice can gather accelerometer data, which can be used to
detect falls. We collected data from 20 volunteers wearing
Silmee during simulated falls and activities of daily living
(ADL). This gave 168 fall and 375 ADL recordings. We used
these recordings in three experiments conducted to com-
pare the performance of machine learning techniques for
the detection of falls from accelerometer data. These ex-
periments evaluate supervised methods, novelty based fall
detection techniques, and finally our proposed hybrid tech-
niques which use supervised methods for feature learning
but can be applied in the context of novelty detection. We
found that the best performing supervised method was the
Convolutional Neural Network (CNN) and the best per-
forming unsupervised method was the one-class Nearest
Neighbour Classifier. The best performing hybrid approach
resulted from a combination of the CNN and the one-class
Support Vector Machine. It draws on the strengths of the
CNN (appropriate feature learning) and may offer more ac-
curate real world fall identification.

1. Introduction

In an ageing society, falls are one of the major public

health problems. They may have dangerous physical con-

sequences, and can also impact on the psychological well

being of the elderly. An older person may develop a fear of

falling as a result of past falls, which can hinder their mo-

bility and independence [7], reducing quality of life. In a

retrospective study, Wild et al. [24] found that, of the pa-

tients who lay on a floor for a period of time longer than

an hour after falling, half died within six months of the fall.

These findings underline the need for immediate interven-

tion after a fall. Therefore automatic systems which could

reliably detect falls continue to be widely researched. Such

systems have a dual role in expediting the arrival of medical

intervention and increasing a person’s confidence in receiv-

ing prompt help, thus reducing their mental distress.

Numerous studies have used accelerometer data to de-

tect falls. In recent years there has been particular interest

in smart phone fall detection applications [1, 11, 16], never-

theless Igual et al. [9] pointed out that the elderly with low

technical skills might not easily adapt to these systems. An

alternative is wearable sensors such as tri-axial accelerom-

eters attached to the waist[5], wrist or head [10]. In this

study, we used a Silmee [22], which is a chest attached de-

vice with the capacity to record both heart beat and acceler-

ation data.

The simplest fall detection systems are based on thresh-

olding. If an event has a peak acceleration magnitude above

the set threshold value it is identified as a fall [4]. More so-

phisticated and precise fall detection methods rely on ma-

chine learning. A brief review of commonly used machine

learning approaches to fall detection is given in section 2.

In this study, we compare different supervised and un-

supervised machine learning approaches and we propose a

hybrid approach that we describe in section 3. We selected

algorithms which have previously been applied to the ac-

celerometer based fall detection problem, based on their

prevalence and performance. We also selected two algo-

rithms, which to our knowledge have not yet been applied to

this problem: the 1D Convolutional Neural Network and the

Replicatory Neural Network, a novelty detector proposed

by Hawkins et al. [8].

2. Fall Detection Algorithms
2.1. Supervised Approaches

Supervised learning approaches are trained on fully la-

belled data from both activities of daily living (ADL) and

falls. Once the training phase is complete, the classifier is

able to identify the category to which a new, unknown event
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belongs.

Albert et al. [1] evaluated five supervised classifiers in

terms of fall detection accuracy on accelerometer data gath-

ered using a mobile phone and wearable accelerometer. The

authors considered support vector machines (SVM), sparse

multinomial logistic regression (SMLR), Naive Bayes, k-

nearest neighbours (K-NN), and decision trees. SVM and

SMLR were found to be the best performing methods in this

study, both identifying simulated falls with 98% accuracy.

Lusterek et al. [13] evaluated eight algorithms on an ac-

tivity recognition task. The algorithms used body location

and velocity data. The authors concluded that the SVM of-

fers the best performance and is closely followed by the ran-

dom forest classifier.

Artificial neural networks (ANN) have also been fre-

quently employed in daily activity classification tasks (e.g

[2, 6, 12, 14]), but as far as we are aware they have not been

used in the fall detection problem. Most of the ANN based

systems for activity recognition from accelerometer data

use multilayer perceptron classifiers (a broader review can

be found in: [21]). Nevertheless, in the recent years, con-

volutional neural networks (CNN) have gained popularity

in the computer vision community, due to their impressive

performance in object recognition tasks [23]. We intend to

investigate whether a simple 1D versions of CNN, applied

to accelerometer data, could match SVM performance on

the fall detection task.

The key weakness of supervised methods is that it is dif-

ficult to gather data from real falls, and unethical to ask el-

derly patients to provide simulated fall data. As a result,

the classifiers are generally trained on falls simulated by

healthy young people, which may not be representative of

real-life falls by elderly people.

2.2. Novelty Detection Approaches

Novelty detection methods do not require simulated falls

for training, which make them more suitable for the iden-

tification of real falls in an older population. The detector

is trained purely on ADL data. New inputs are classified

as falls if they are very different from the ADL data on

which the detector was trained. A review of novelty de-

tection methods by Pimentel et al. can be found in [20].

Zhang et al. [25] was the first to propose using a nov-

elty detector in the fall identification problem. The authors

used one-class SVM and in their study, 96.7% of the test

activities were classified correctly.

More recently, Medrano et al. [15] compared three

novelty based fall detectors: k-means, One-class Nearest

Neighbour and One-class SVM and reported that Nearest

Neighbour(1NN) performed best. In their study they also

compare the best unsupervised novelty detector (1NN) with

one of the supervised methods (SVM). Even though the

SVM marginally outperformed 1NN, the authors were opti-

Figure 1. PCA-based hybrid architecture. The PCA transformed

ADLs are the input to the novelty detector.

mistic about the real world usability of the novelty detection

methods.

One of the novelty based methods not evaluated by

Medrano et al. is the replicatory neural network (RNN)[8].

The idea here is the following: during training on ADL data,

the neural network learns to replicate its inputs. In the test-

ing phase, a new event is fed through the network, and the

replication produced by the network is compared with the

input. If there is a large difference, then the event is classi-

fied as abnormal.

The key strength of the novelty detection approach is that

detectors can be easily personalised, since the data is con-

tinuously gathered from the user, with no requirement for

the user to perform numerous fall simulations.

3. Novelty Hybrid

One of the potential problems of novelty detectors is that

they might detect novelties which are unconnected with the

target task (for instance, the person started hobbling). We

propose to identify the dimension in which detector should

look for novelties, by finding the directions of maximal vari-

ance in data which is a mixture of both ADL and fall ex-

amples. As shown in figure 1, PCA is fitted to profiles of

both types of activities: normal (ADL) and abnormal/novel

(falls), but the novelty detector is subsequently trained on

only the normal activities, projected onto the space of the

maximal variation. During the test phase, activities are

transformed using fitted PCA and they are then fed to the

abnormality detector, which classifies the activity.

The alternative way of finding an appropriate feature

space is to train a convolutional neural network, which hi-

erarchically extracts features. The final classification layer

of the CNN can then be replaced with an abnormality de-
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tector. The CNN is trained as usual on ADL and fall data.

Then, similarly to the PCA + novelty detector hybrid, only

normal data is fed through the CNN to train an abnormality

detector, which uses as input the features discovered by the

CNN.

For this approach, two population cohorts are required: a

group of healthy young people who perform falls in the con-

trolled environment (as for supervised approaches) and a

second group of elderly patients, from whom normal data is

collected. Feature discovery is performed on the data from

the simulated falls, but the training of the novelty detector

is performed on the ADL data from the elderly group. Us-

ing this method, the fall detector is personalised to the user,

with the aim of improving performance for real data.

4. Experiments
This work consists of three comparative studies. The

first study evaluates four supervised methods of fall detec-

tion against a simple threshold based classifier (ST). The al-

gorithms selected are: Support Vector Machine (SVM), K-

Nearest Neighbour (K-NN), Random Forest (RF) and Con-

volutional Neural Network (CNN).

The second study focuses on novelty based fall detection

techniques. A Replicatory Neural Network (RNN) is com-

pared with a widely used 1-class SVM (1SVM) and 1-class

Nearest Neighbour classifier (1NN), recently reported to be

the best performing novelty detector in fall detection task

[15].

Finally, we propose six novelty hybrid techniques

which draw benefits from the supervised methods (fea-

ture/dimension selection) but can be applied in a novelty

detection context.

4.1. Dataset

The data was collected from 20 volunteers (22-49 years

old) in four data gathering sessions. Each participant was

asked to perform activities of daily living (ADL) and twelve

different types of falls as proposed by Noury et al. [17].

During all activities volunteers wore a Silmee device placed

just below their clavicle. All falls were completed on a

crash mat in a controlled environment. We gathered in

total 641 ADLs and 168 falls. We are interested in dis-

criminating between ADLs, which are above 1.6g threshold

and falls. This threshold was chosen to eliminate sedentary

ADL [18]which are very easily distinguishable from falls.

Interesting ADLs are those which are harder to differentiate

from accelerometer data as normal events e.g. sitting down

heavily. We have considered 375 ADLs, that are above the

1.6g threshold, for training and testing the algorithms (see

Figure 2).

The Silmee device that was employed was a Silmee Bar

type. This has an online battery life of 8 hours and a maxi-

mum sample rate of 125Hz. The sample rate employed was

Figure 2. Jitter plot of the peak magnitude of the extracted ADL

and Falls (jittering applied in the x-axis direction). A fixed peak

magnitude threshold cannot perfectly separate ADL from Falls.

Figure 3. The curves represent extracted one-second long events.

Each extracted event is a 21 feature long vector, with a sample at

the peak magnitude and 10 samples before and after the peak. The

top figure shows falls and the bottom figure shows ADLs.

between 16Hz (64ms) and 64Hz (16ms).

4.2. Experimental setup

For each activity, an acceleration magnitude vector was

computed from the acceleration in the x, y and z direc-

tions. The resulting magnitude vector was interpolated and

re-sampled at 50ms rate to ensure that any inconsistency

in sampling rate between sessions was removed. In each

event, the peak magnitude was located, 500ms before and

after this peak was extracted, resulting in a 1-second long

acceleration magnitude feature vector of 21 samples (see

Figure 3).

The algorithms were trained on data from three sessions

and tested on the fourth session in 4-fold cross validation.

All methods were implemented using Python. We used

the scikit-learn package [19] implementation of most of

the novelty methods and most of the supervised algorithms

evaluated in our study. CNN and RNN were implemented

using the Theano Python library [3]. The parameters for

all scikit-learn based algorithms were selected using grid

search to maximise precision.
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The CNN was built from the two pairs of convolutional

and pooling layers. The first convolutional layer has 30

nodes and the second has 15 nodes. The filter size is 4

for both and the pool size is 2. The fully connected layer

has 6 nodes and it is followed by a soft-max classification

layer, or a novelty detector in the CNN based novelty hy-

brid implementation. The CNN uses L2 regularisation with

a penalty of 0.002. All parameters were chosen empirically.

The replicatory neural network has 3 hidden layers with

70, 40 and 70 nodes respectively. The number of input fea-

tures is equivalent to the number of output nodes. Each one-

second extracted data example has 21 features. The feature

vectors after PCA transformation are shorter and are equal

to the number of the principal components with an addi-

tional feature, which is the peak magnitude of the extracted

activity (as shown in figure 1). All neural network based

approaches use the rectifier activation function.

The problem with interpreting the results from most of

the studies mentioned in section 2 is that accuracy scores

are usually given, instead of than the separate false posi-

tive and true positive rates. This information might be im-

portant because the test data usually contains more ADLs

than falls, and even if the falls were always identified in-

correctly as ADL, the classification accuracy results might

be high. Therefore in this study we evaluate all algorithms

in terms of the area under the ROC curve (AUC). Follow-

ing Medrano et al. study and Noury et al. guidelines for

evaluation of fall detector, we also provide specific value

of sensitivity(SE) and specificity(SP), which are selected at

the point maximising their geometric mean
√
SE × SP .

4.3. Results and Discussion

Supervised approaches. Figure 4 shows the area under

the ROC curve for the supervised methods. The AUC of all

of the selected algorithms in the comparison is higher than

the AUC of the baseline simple threshold classifier. The

best performing method in terms of AUC is CNN. Table 1

presents additional information about the results of sensi-

tivity (SE) and specificity (SP) of the methods. The best

results for each measure are shown in bold text. The SVM

has the best SE, whereas the K-NN and CNN have the high-

est SP (CNN is slightly better, but there is higher variance

in the results). The best result of the geometric mean of SE

and SP is obtained by K-NN, closely followed by CNN.

Novelty detection approaches. Table 2 presents a com-

parison of novelty detection based fall identification tech-

niques. All of the novelty based methods have lower AUC

results than any of the supervised algorithms. However, this

is not a like-for-like comparison since the test and training

populations differ. The best performing novelty detector is

1NN (see figure 5) and the poorest performance is given by

the RNN, which has also the highest variance. In terms of

SP, 1SVM performs the best.

Supervised approaches

Method AUC
√
SE × SP SE SP

ST 0.910 0.852 0.872 0.833

CNN 0.946 0.895 0.877 0.911
SVM 0.934 0.881 0.917 0.845

RF 0.927 0.854 0.811 0.899

K-NN 0.921 0.907 0.909 0.903

Table 1. Comparison of supervised methods for fall detection. RF

and CNN are not deterministic, therefore we report the mean and

standard deviation of the results over 5 runs of the experiment.

RF AUC σ = 0.005, RF SE and SP σ = 0.027, CNN AUC

σ = 0.004, CNN SE and SP σ = 0.019.

Figure 4. ROC curves for supervised methods.

Novelty detection approaches

Method AUC
√
SE × SP SE SP

RNN 0.856 0.784 0.710 0.871

1SVM 0.888 0.850 0.828 0.872
1NN 0.915 0.855 0.858 0.853

Table 2. Comparison of novelty detection methods for fall detec-

tion. The experiment was run 5 times for each method and the

mean results are presented in the table. The variance due to ran-

domness for 1NN and 1SVM was 0, these methods are determin-

istic. RNN AUC σ = 0.016, RNN SE and SP σ = 0.085

Hybrid approaches. The novelty hybrid methods are

compared in table 3. For PCA hybrids, the number of PCA

components resulting in the best AUC is reported. CNN

extracts six features, as the fully connected layer has six

nodes. The lowest AUC is given by the combination of the

PCA and RNN. The highest AUC is achieved by the combi-

nation of CNN and one-class SVM. Interestingly this hybrid

performs even better than CNN on its own.

Overall the novelty hybrid methods perform better than

405405405



Novelty Hybrids

Method AUC [σ]
√
SE × SP [σ] SE [σ] SP [σ]

PCA(13 components) + RNN 0.864 [0.018] 0.786 [0.021] 0.748 [0.060] 0.841 [0.024]

PCA(13 components) + 1SVM 0.882 [0.000] 0.843 [0.000] 0.852 [0.000] 0.833 [0.000]

PCA(13 components) + 1NN 0.928 [0.000] 0.869 [0.000] 0.814 [0.000] 0.927 [0.000]

CNN + RNN 0.889 [0.028] 0.806 [0.017] 0.786 [0.049] 0.826 [0.047]

CNN + 1SVM 0.958 [0.002] 0.921 [0.012] 0.946 [0.014] 0.912 [0.016]

CNN + 1NN 0.876 [0.037] 0.847 [0.032] 0.918 [0.033] 0.818 [0.036]

Table 3. Comparison of novelty hybrid methods for fall detection. The experiment was run 5 times for each method, mean results and the

standard deviation for each method are presented in the table. Note that the standard deviation for PCA based hybrid with 1NN and 1SVM

is zero, because these methods remain deterministic.

Figure 5. ROC curves for novelty detection methods.

the novelty detectors, which may suggest that selection of

appropriate feature space is crucial for these approaches.

The one-class SVM is the detector whose performance is

most improved by the new feature space definition. CNN

based novelty hybrids give better results than PCA based

hybrids (see figure 6), indicating that features extracted by

the CNN are more meaningful than features resulting from

dimensionality reduction. The exception is the 1NN, which

is boosted by PCA, but its performance varies when it uses

CNN extracted features.

Figure 7 shows how the AUC varies with the number

of PCA components. If fewer than 9 principle components

are selected, then information needed for discrimination be-

tween falls and ADL is partially lost. Interestingly 6 prin-

cipal components are less meaningful to a novelty detec-

tor than 6 features extracted by CNN. A subject for future

work is to investigate the difference between those features

and attempt to explain why CNN extracted features lead to

better performance of novelty detectors.

Figure 6. Novelty Hybrid ROC Curves. PCA based hybrid here

with 16 components. Novelty hybrids performance vary between

0.869 to 0.959

Figure 7. Graph showing the relationship between the number of

PCA components and the AUC for PCA based novelty hybrid

methods.
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5. Conclusion
We have presented an experimental comparative study of

the performance of five supervised, three unsupervised and

six hybrid methods for fall detection. We found that the

best performing supervised method was the CNN and the

best performing novelty detector was the 1NN.

While the novelty detection methods might be more

suited to detect real-life falls based on personalised train-

ing data, their performance is not comparable with the su-

pervised techniques on the simulated falls. Nevertheless,

as mentioned previously, the performance of supervised ap-

proaches is expected to drop when applied to the data col-

lected from elderly people.

In the future it would be interesting to test these meth-

ods on a distinctly different population cohort. In such a

situation the supervised methods may be found to be less

advantageous.

The best performing hybrid approach is the combination

of CNN and 1-class SVM. It draws on the strengths of the

CNN (appropriate feature selection) and may offer more ac-

curate real-life fall identification.
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